
Schema
Release 0.1.0

Sep 17, 2022

Contents

1 Overview 3

2 Installation 7

3 API 9

4 Data Integration Examples 15

5 Visualization Examples 27

6 Datasets 31

7 References 33

8 Indices and tables 35

Python Module Index 37

Index 39

i

ii

Schema, Release 0.1.0

Schema is a Python library for the synthesis and integration of heterogeneous single-cell modalities. It is designed
for the case where the modalities have all been assayed for the same cells simultaneously. Here are some of the
analyses that you can do with Schema:

• infer cell types jointly across modalities.

• perform spatial transcriptomic analyses to identify differntially-expressed genes in cells that display a specific
spatial characteristic.

• create informative t-SNE & UMAP visualizations of multimodal data by infusing information from other modal-
ities into scRNA-seq data.

Schema offers support for the incorporation of more than two modalities and can also simultaneously handle batch
effects and metadata (e.g., cell age).

Schema is based on a metric learning approach and formulates the modality-synthesis problem as a quadratic pro-
gramming problem. Its Python-based implementation can efficiently process large datasets without the need of a
GPU.

Read the documentation. We encourage you to report issues at our Github page ; you can also create pull reports there
to contribute your enhancements. If Schema is useful in your research, please consider citing our papers: Genome
Biology (2021), with preprint in bioRxiv (2019).

Contents 1

https://pypi.org/project/schema_learn
https://schema-multimodal.readthedocs.io/en/latest/?badge=latest
https://schema-multimodal.readthedocs.io/en/latest/overview.html
https://github.com/rs239/schema
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02313-2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02313-2
http://doi.org/10.1101/834549

Schema, Release 0.1.0

2 Contents

CHAPTER 1

Overview

Schema is a general algorithm for integrating heterogeneous data modalities. While it has been specially designed for
multi-modal single-cell biological datasets, it should work in other multi-modal contexts too.

Schema is designed for single-cell assays where multiple modalities have been simultaneously measured for each
cell. For example, this could be simultaneously-asayed (“paired”) scRNA-seq and scATAC-seq data, or a spatial-
transcriptomics dataset (e.g. 10x Visium, Slideseq or STARmap). Schema can also be used with just a scRNA-seq
dataset where some per-cell metadata is available (e.g., cell age, donor information, batch ID etc.). With this data,
Schema can help perform analyses like:

• Characterize cells that look similar transcriptionally but differ epigenetically.

• Improve cell-type inference by combining RNA-seq and ATAC-seq data.

• In spatially-resolved single-cell data, identify differentially expressed genes (DEGs) specific to a spatial pattern.

• Improved visualizations: tune t-SNE or UMAP plots to more clearly arrange cells along a desired manifold.

• Simultaneously account for batch effects while also integrating other modalities.

3

Schema, Release 0.1.0

1.1 Intuition

To integrate multi-modal data, Schema takes a metric learning approach. Each modality is interepreted as a multi-
dimensional space, with observations mapped to points in it (B in figure above). We associate a distance metric with
each modality: the metric reflects what it means for cells to be similar under that modality. For example, Euclidean
distances between L2-normalized expression vectors are a proxy for coexpression. Across the three graphs in the
figure (B), the dashed and dotted lines indicate distances between the same pairs of observations.

Schema learns a new distance metric between points, informed jointly by all the modalities. In Schema, we start by
designating one high-confidence modality as the primary (i.e., reference) and the remaining modalities as secondary—
we’ve found scRNA-seq to typically be a good choice for the primary modality. Schema transforms the primary-
modality space by scaling each of its dimensions so that the distances in the transformed space have a higher (or
lower, if desired!) correlation with corresponding distances in the secondary modalities (C,D in the figure above).
You can choose any distance metric for the secondary modalities, though the primary modality’s metric needs to be
Euclidean. The primary modality can be pre-transformed by a PCA or NMF transformation so that the scaling occurs
in this latter space; this can often be more powerful because the major directions of variance are now axis-aligned and
hence can be scaled independently.

1.2 Advantages

In generating a shared-space representation, Schema is similar to statistical approaches like CCA (canonical correlation
analysis) and deep-learning methods like autoencoders (which map multiple representations into a shared latent space).
Each of these approaches offers a different set of trade-offs. Schema, for instance, requires the output space to be a
linear transformation of the primary modality. Doing so allows it to offer the following advantages:

• Interpretability: Schema identifies which features of the primary modality were important in maximizing its
agreement with the secondary modalities. If the features corresponded to genes (or principal components), this
can directly be interpreted in terms of gene importances.

• Regularization: single-cell data can be sparse and noisy. As we discuss in our paper, unconstrained approaches
like CCA and autoencoders seek to maximize the alignment between modalities without any other consider-
ations. In doing so, they can pick up on artifacts rather than true biology. A key feature of Schema is its
regularization: if enforces a limit on the distortion of the primary modality, making sure that the final result
remains biologically informative.

• Speed and flexibility: Schema is a based on a fast quadratic programming approach that allows for substantial
flexibility in the number of secondary modalities supported and their relative weights. Also, arbitrary distance
metrics (i.e., kernels) are supported for the secondary modalities.

1.3 Quick Start

Install via pip

pip install schema_learn

Example: correlate gene expression with developmental stage. We demonstrate use with Anndata objects here.

import schema
adata = schema.datasets.fly_brain() # adata has scRNA-seq data & cell age

sqp = schema.SchemaQP(min_desired_corr=0.99, # require 99% agreement with original
→˓scRNA-seq distances

(continues on next page)

4 Chapter 1. Overview

https://en.wikipedia.org/wiki/Similarity_learning#Metric_learning
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
https://doi.org/10.1101/834549

Schema, Release 0.1.0

(continued from previous page)

params= {'decomposition_model': 'nmf', 'num_top_components':
→˓20})

#correlate the gene expression with the 'age' parameter
mod_X = sqp.fit_transform(adata.X, # primary modality

[adata.obs['age']], # list of secondary modalities
['numeric']) # datatypes of secondary modalities

gene_wts = sqp.feature_weights() # get a ranking of gene wts important to the
→˓alignment

1.4 Paper & Code

Schema is described in the paper Schema: metric learning enables interpretable synthesis of heterogeneous single-cell
modalities (http://doi.org/10.1101/834549)

Source code available at: https://github.com/rs239/schema

1.4. Paper & Code 5

http://doi.org/10.1101/834549
https://github.com/rs239/schema

Schema, Release 0.1.0

6 Chapter 1. Overview

CHAPTER 2

Installation

We recommend Python v3.6 or higher.

2.1 PyPI, Virtualenv, or Anaconda

You can use pip (or pip3):

pip install schema_learn

2.2 Docker

Schema has been designed to be compatible with the popular and excellent single-cell Python package, Scanpy. We
recommend installing the Docker image recommended by Scanpy maintainers and then using pip, as described above,
to install Schema in it.

7

http://scanpy.readthedocs.io
https://scanpy.readthedocs.io/en/1.4.4.post1/installation.html#docker

Schema, Release 0.1.0

8 Chapter 2. Installation

CHAPTER 3

API

class schema.SchemaQP(min_desired_corr=0.99, mode=’affine’, params={})
Bases: object

Schema is a tool for integrating simultaneously-assayed data modalities

The SchemaQP class provides a sklearn type fit+transform API for constrained affine transformations of input
datasets such that the transformed data is in agreement with all the input datasets.

Parameters

• min_desired_corr (float in [0,1)) – This parameter controls the severity of the
primary modality’s transformation, specifying the minimum required correlation between
distances in the original space and those in the transformed space. It thus controls the trade-
off between deviating further away from the primary modality’s original representation and
achieving greater agreement with the secondary modalities. Values close to one result in
lower distortion of the primary modality while those close to zero enable transformations
offering greater agreement between the modalities.

RECOMMENDED VALUES: In typical single-cell use cases, high values (> 0.80) will
probably work best. With these, the distortion will be low, but still be enough for Schema
to extract relevant information from the secondary modalities. Furthermore, the feature
weights computed by Schema should still be quite infromative.

The default value of 0.99 is a safe choice to start with; it poses low risk of deviating too far
from the primary modality.

Later, you can experiment with a range of values (e.g., 0.95 0.90, 0.80), or use feature-
weights aggregated across an ensemble of choices. Alternatively, you can use cross-
validation to identify the best setting

• mode (string) – Whether to perform a general affine transformation or just a scaling
transformation

– affine first does a mapping to PCA or NMF space (you can specify num_top_components
via the params argument). Schema does a scaling transform in the mapped space and
then converts everything back to the regular space. The final result is thus an affine
transformation in the regular space.

9

Schema, Release 0.1.0

– scale does not do a PCA or NMF mapping, and directly applies the scaling transformation.
Note: This can be slow if the primary modality’s dimensionality is over 100.

RECOMMENDED VALUES: affine is the default. You may need scale only in certain
cases:

– You have a limited number of features on which you directly want Schema to compute
feature-weights.

– You want to do a change-of-basis transform other PCA or NMF. If so, you will need
to do that yourself and then call SchemaQP with the transformed primary dataset with
mode=’scale’.

• params (dict) – Dictionary of key-value pairs, specifying additional configuration pa-
rameters. Here are the important ones:

– decomposition_model: “pca” or “nmf” (default=pca)

– num_top_components: (default=50) number of PCA (or NMF) components to use when
mode==”affine”. We recommend this setting be <= 100. Schema’s runtime is quadratic
in this number.

You can ignore the rest on your first pass; the default values are pretty reasonable:

– dist_npairs: (default=2000000). How many pt-pairs to use for computing pairwise dis-
tances. value=None means compute exhaustively over all n*(n-1)/2 pt-pairs. Not recom-
mended for n>5000. Otherwise, the given number of pt-pairs is sampled randomly. The
sampling is done in a way in which each point will be represented roughly equally.

– scale_mode_uses_standard_scaler: 1 or 0 (default=0), apply the standard scaler in the
scaling mode

– do_whiten: 1 or 0 (default=1). When mode==”affine”, should the change-of-basis load-
ings be made 1-variance?

Returns A SchemaQP object on which you can call fit(. . .), transform(. . .) or fit_transform(. . . .).

explore_param_mincorr(d, secondary_data_val_list, secondary_data_type_list, sec-
ondary_data_wt_list=None, min_desired_corr_values=[0.999,
0.99, 0.95, 0.9, 0.8, 0.5, 0.2, 0], addl_fit_kwargs={},
addl_feature_weights_kwargs={})

Helper function to explore multiple choices of the min_desired_corr param.

For a range of min_desired_corr parameter values, it performs a fit, gets the feature_weights, and also the
achieved distance correlation between the transformed data and the primary/secondary modalities. While
this method is simply a convenience wrapper around other public methods, it is nonetheless useful for
exploring the best choice of min_desired_corr for your application. For example, if you’re doing batch
correction and hence set a secondary modality’s wt to be negative, you want the distance correlation of
batch information and transformed data to go to zero, not beyond that into negative correlation territory.
This function can help you identify an appropriate min_desired_corr value.

The required arguments are the same as those for a call to fit (which this method calls, under the hood).
The default list of possible values for min_desired_corr is a good place to start.

Parameters

• d (Numpy 2-d array or Pandas dataframe) – Same as in fit: the primary dataset (e.g.
scanpy/anndata’s .X).

• secondary_data_val_list (list of 1-d or 2-d Numpy arrays or Pandas series, each
with same number of rows as d) – Same as in fit: the secondary datasets you want to align
the primary data towards.

10 Chapter 3. API

Schema, Release 0.1.0

• secondary_data_type_list (list of strings) – Same as in fit: the
datatypes of the secondary modalities.

• secondary_data_wt_list (list of floats, optional) – Same as in fit: user-specified
wts for each secondary dataset (default= list of 1’s)

• min_desired_corr_values (list of floats, each value v being
0 <= v < 1) – list of min_desired_corr values to explore. The default is [0.999, 0.99,
0.95, 0.9, 0.8, 0.5, 0.2, 0]

• addl_fit_kwargs (dict) – additional named arguments passed on to fit(. . .)

• addl_feature_weights_kwargs (dict) – named arguments passed on to fea-
ture_weights(. . .)

Returns

a tuple with 4 entries. In the first 3 below, each row of the dataframe corresponds to a
min_desired_corr value

a) Dataframe of starting and ending distance correlations (see
get_start_end_dist_correlations for details)

b) Dataframe of feature weights, produced by a call to feature_weights

c) Dataframe of QP solution wts. Same as feature weights if mode=’scale’, otherwise this
corresponds to the QP-computed wts in the PCA/NMF space

d) Dictionary of SchemaQP objects, keyed by the min_desired_corr parameter. You can use
them for transform calls.

feature_weights(affine_map_style=’top-k-loading’, k=1)
Return the feature weights computed by Schema

If SchemaQP was initialized with mode=scale, the weights returned are directly the weights from
the quadratic programming (QP), with a weight > 1 indicating the feature was up-weighted. The
affine_map_style argument is ignored.

However, if mode=affine was used, the QP-computed weights correspond to columns of the PCA or NMF
decomposition. In that case, this functions maps them back to the primary dataset’s features. This can be
done in three different ways, as specified by the affine_map_style parameter.

You can build your own mapping from PCA/NMF weights to primary-modality feature weights. The
instance’s _wts member is the numpy array that contains QP-computed weights, and _decomp_mdl is the
sklearn-computed NMF/PCA decomposition. You can also look at the source code of this function to get
a sense of how to use them.

Parameters

• affine_map_style (string, one of 'softmax-avg' or
'top-k-rank' or 'top-k-loading', default='top-k-loading')
– Governs how QP-computed weights for PCA/NMF columns are mapped back to
primary-modality features (typically, genes from a scRNA-seq dataset).

Default is ‘top-k-loading’, which considers only the top-k PCA/NMF columns by QP-
computed weight and computes the average loading of a gene across these. The second
argument specifies k (default=1)

Another choice is ‘softmax-avg’, which computes gene weights by a softmax-type summa-
tion of loadings across the PCA/NMF columns, with each column’s weight proportional
to exp(QP wt), and only columns with QP weight > 1 being considered. k is ignored here.

11

Schema, Release 0.1.0

Yet another choice is ‘top-k-rank’, which considers only the top-k PCA/NMF columns by
QP-computed weight and computes the average rank of a gene across their loadings. The
second argument specifies k (default=1)

In all approaches, PCA loadings are first converted to absolute value, since PCA columns
are unique up to a sign.

• k (int, >= 0) – The number of PCA/NMF columns to average over, when
affine_map_style = top-k-loading or top-k-rank.

returns : a vector of floats, the same size as the primary dataset’s dimensionality

fit(d, secondary_data_val_list, secondary_data_type_list, secondary_data_wt_list=None, sec-
ondary_data_dist_kernels=None, d0=None, d0_dist_transform=None)
Compute the optimal Schema transformation, first performing a change-of-basis transformation if required.

Given the primary dataset d and a list of secondary datasets, fit a linear transformation (d_new) such that
the correlation between squared pairwise distances in d_new and those in secondary datasets is maximized
while the correlation between the original d and the transformed d_new remains above min_desired_corr.

The first three arguments are required, the next is useful, and the rest should be rarely used.

Parameters

• d (Numpy 2-d array or Pandas dataframe) – The primary dataset (e.g. scanpy/anndata’s
.X).

The rows are observations (e.g., cells) and the cols are variables (e.g., gene expres-
sion). The default distance measure computed is L2: sum((point1-point2)**2). Also see
d0_dist_transform.

• secondary_data_val_list (list of 1-d or 2-d Numpy arrays or Pandas series, each
with same number of rows as d) – The secondary datasets you want to align the primary
data towards.

Columns in Anndata .obs or .obsm variables work well.

• secondary_data_type_list (list of strings) – The datatypes of the sec-
ondary modalities.

Each element of the list can be one of numeric, feature_vector, categorical,
feature_vector_categorical. The list’s length should match the length of sec-
ondary_data_val_list

– numeric: one floating-pt value for each observation. The default distance measure is
Euclidean: (point1-point2)^2

– feature_vector: a k-dimensional vector for each observation. The default distance mea-
sure is Euclidean: sum_{i}((point1[i]-point2[i])^2)

– categorical: a label for each observation. The default distance measure checks for
equality: 1*(val1!=val2)

– feature_vector_categorical: a vector of labels for each observation. Each col-
umn can take on categorical values, so the distance between two points is
sum_{i}(point1[i]==point2[i])

• secondary_data_wt_list (list of floats, optional) – User-specified wts for each
secondary dataset (default= list of 1’s)

If specified, the list’s length should match the length of secondary_data_val_list. When
multiple secondary modalities are specified, this parameter allows you to control their
relative weight in seeking an agreement with the primary.

12 Chapter 3. API

Schema, Release 0.1.0

Note: you can try to get a mapping that disagrees with a dataset_info instead of agreeing.
To do so, pass in a negative number (e.g., -1) here. This works even if you have just one
secondary dataset

• secondary_data_dist_kernels (list of functions, optional) – The transforma-
tions to apply on secondary dataset’s L2 distances before using them for correlations.

If specified, the length of the list should match that of secondary_data_val_list. Each
function should take a non-negative float and return a non-negative float.

Handle with care: Most likely, you don’t need this parameter.

• d0 (A 1-d or 2-d Numpy array, optional) – An alternative representation of the primary
dataset.

This is useful if you want to provide the primary dataset in two forms: one for transforming
and another one for computing pairwise distances to use in the QP constraint; if so, d is
used for the former, while d0 is used for the latter. If specified, it should have the same
number of rows as d.

Handle with care: Most likely, you don’t need this parameter.

• d0_dist_transform (float -> float function, optional) – The transformation to apply
on d or d0’s L2 distances before using them for correlations.

This function should take a non-negative float as input and return a non-negative float.

Handle with care: Most likely, you don’t need this parameter.

Returns None

fit_transform(d, secondary_data_val_list, secondary_data_type_list, sec-
ondary_data_wt_list=None, secondary_data_dist_kernels=None, d0=None,
d0_dist_transform=None)

Calls fit(..) with exactly the arguments given; then calls transform(d). See documentation for fit(. . . .) and
transform(. . .) respectively.

get_start_end_dist_correlations()
Return the starting and ending distance correlations between primary and secondary modalities

Note: the distance correlations reported out (even between the primary and secondary modalities) may
vary from run to run, since the underlying algorithm samples a set of point pairs to compute its estimates.

Returns

a tuple with 3 entries:

a) distance correlation between primary and transformed space. This should always be >=
min_desired_corr but it can be substantially greater than min_desired_corr if the optimal
solution requires that.

b) vector of distance correlations between primary and secondary modalities, and

c) vector of distance correlations between transformed dataset and secondary modalities

reset_maxwt_param(w_max_to_avg)
Reset the w_max_to_avg param

Parameters w_max_to_avg (float) – The upper-bound on the ratio of Schema weights
(w’s) largest element to w’s avg element. Making it large will allow This parameter controls
the ‘deviation’ in feature weights and make it large will allow for more severe transforma-
tions.

13

Schema, Release 0.1.0

Handle with care: We recommend keeping this parameter at its default value (1000); that
keeps this constraint very loose and ensures that min_desired_corr remains the binding con-
straint. Later, as you get a better sense for the right min_desired_corr values for your data,
you can experiment with this too. To really constrain this, set it in the (1-5] range, depending
on how many features you have.

reset_mincorr_param(min_desired_corr)
Reset the min_desired_corr.

Useful when you want to iterate over multiple choices of this parameter but want to re-use the computed
PCA or NMF change-of-basis transform.

Parameters min_desired_corr (float in [0,1)) – The new value of minimum re-
quired correlation between original and transformed distances

transform(d)
Given a dataset d, apply the fitted transform to it

Parameters d (Numpy 2-d array) – The primary modality data on which to apply the trans-
formation.

d must have with same number of columns as in fit(. . .). The rows are observations (e.g.,
cells) and the cols are variables (e.g., gene expression).

Returns a 2-d Numpy array with the same shape as d

14 Chapter 3. API

CHAPTER 4

Data Integration Examples

4.1 API-usage Examples

Note: The code snippets below show how Schema could be used for hypothetical datasets and illustrates the API usage.
In the next sections (Paired RNA-seq and ATAC-seq, Paired-Tag) and in Visualization, we describe worked examples
where we also provide the dataset to try things on. We are working to add more datasets.

Example Correlate gene expression 1) positively with ATAC-Seq data and 2) negatively with Batch information.

atac_50d = sklearn.decomposition.TruncatedSVD(50).fit_transform(atac_cnts_sp_matrix)

sqp = SchemaQP(min_corr=0.9)

df is a pd.DataFrame, srs is a pd.Series, -1 means try to disagree
mod_X = sqp.fit_transform(df_gene_exp, # gene expression dataframe: rows=cells,
→˓cols=genes

[atac_50d, batch_id], # batch_info can be a pd.Series or
→˓np.array. rows=cells

['feature_vector', 'categorical'],
[1, -1]) # maximize combination of (agreement with ATAC-

→˓seq + disagreement with batch_id)

gene_wts = sqp.feature_weights() # get gene importances

Example Correlate gene expression with three secondary modalities.

sqp = SchemaQP(min_corr = 0.9) # lower than the default, allowing greater distortion
→˓of the primary modality
sqp.fit(adata.X,

[adata.obs['col1'], adata.obs['col2'], adata.obsm['Matrix1']],
["categorical", "numeric", "feature_vector"]) # data types of the three

→˓modalities
mod_X = sqp.transform(adata.X) # transform
gene_wts = sqp.feature_weights() # get gene importances

15

https://schema-multimodal.readthedocs.io/en/latest/visualization/index.html#ageing-fly-brain

Schema, Release 0.1.0

4.2 Paired RNA-seq and ATAC-seq

Here, we integrate simultaneously assayed RNA- and ATAC-seq data from Cao et al.’s sci-CAR study of mouse
kidney cells. Specifically, we’ll try to do better cell-type inference by considering both RNA-seq and ATAC-seq
data simultaneously. The original study has ground-truth labels for most of the cell types, allowing us to benchmark
automatically-computed clusters (generated by Leiden clustering here). As we’ll show, a key challenge here is that the
ATAC-seq data is very sparse and noisy. Naively incorporating it with RNA-seq can actually be counter-productive—
the joint clustering from a naive approach can actually have a lower overlap with the ground truth labels than if we
were to just use RNA-seq-based clustering.

Note: This example involves generating Leiden clusters; you will need to install the igraph and leidenalg Python
packages if you want to use them:

pip install igraph
pip install leidenalg

Let’s start by getting the data. We have preprocessed the original dataset, done some basic cleanup, and put it into an
AnnData object that you can download. Please remember to also cite the original study if you use this dataset.

import schema
adata = schema.datasets.scicar_mouse_kidney()
print(adata.shape, adata.uns['atac.X'].shape)
print(adata.uns.keys())

As you see, we have stored the ATAC data (as a sparse numpy matrix) in the .uns slots of the anndata object. Also
look at the adata.obs dataframe which has t-SNE coordinates, ground-truth cell type names (as assigned by Cao et al.)
and cluster colors etc. You’ll notice that some cells don’t have ground truth assignments. When evaluating, we’ll skip
those.

To use the ATAC-seq data, we reduce its dimensionality to 50. Instead of PCA, we apply TruncatedSVD since the
ATAC counts matrix is sparse.

svd2 = sklearn.decomposition.TruncatedSVD(n_components= 50, random_state = 17)
H2 = svd2.fit_transform(adata.uns["atac.X"])

Next, we run Schema. We choose RNA-seq as the primary modality because 1) it has lower noise than ATAC-seq, and
2) we want to investigate which of its features (i.e., genes) are important during the integration. We will first perform a
NMF transformation on the RNA-seq data. For the secondary modality, we’ll use the dimensionality-reduced ATAC-
seq. We require a positive correlation between the two (secondary_data_wt_list = [1] below). Importantly, we force
Schema to generate a low-distortation transformation : the correlation of distances between original RNA-seq
space and the transformed space, min_desired_corr is required to be >99%. This low-distortion capability of Schema
is crucial here, as we’ll demonstrate.

In the params settings below, the number of randomly sampled point-pairs has been bumped up to 5M (from de-
fault=2M). It helps with the accuracy and doesn’t cost too much computationally. We also turned off do_whiten (de-
fault=1, i.e., true). When do_whiten=1, Schema first rescales the PCA/NMF transformation so that each axis has unit
variance; typically, doing so is “nice” from a theoretical/statistical perspective. But it can interfere with downstream
analyses (e.g., Leiden clustering here).

sqp99 = schema.SchemaQP(0.99, mode='affine', params= {"decomposition_model":"nmf",
"num_top_components":50,
"do_whiten": 0,
"dist_npairs": 5000000})

dz99 = sqp99.fit_transform(adata.X, [H2], ['feature_vector'], [1])

Let’s look at the feature weights. Since we ran the code in ‘affine’ mode, the raw weights from the quadratic program
will correspond to the 50 NMF factors. Three of these factors seem to stand out; most other weights are quite low.

16 Chapter 4. Data Integration Examples

https://science.sciencemag.org/content/361/6409/1380/

Schema, Release 0.1.0

plt.plot(sqp99._wts)

Schema offers a helper function to convert these NMF (or PCA) feature weights to gene weights. The function offers
a few ways of doing so, but the default is to simply average the loadings across the top-k factors:

v99 = sqp99.feature_weights("top-k-loading", 3)

Let’s do a dotplot to visualize how the expression of these genes varies by cell name. We plot the top 10 genes by
importance here.

dfv99 = pd.DataFrame({"gene": adata.var_names, "v":v99}).sort_values("v",
→˓ascending=False).reset_index(drop=True)
sc.pl.dotplot(adata, dfv99.gene.head(10).tolist(),'cell_name_short', figsize=(8,6))

As you’ll notice, theese gene seem to be differentially expressed in PT cells, PBA and Ki-67+ cells. Essentially, these
are cell types where ATAC-seq data was most informative. As we’ll see shortly, it is preciely in these cells where
Schema is able to offer the biggest improvement.

4.2. Paired RNA-seq and ATAC-seq 17

Schema, Release 0.1.0

For a comparison later, let’s also do a Schema run without a strong distortion control. Below, we set the
min_desired_corr parameter to 0.10 (i.e., 10%). Thus, the ATAC-seq data will get to influence the transformation
a lot more.

sqp10 = schema.SchemaQP(0.10, mode='affine', params= {"decomposition_model":"nmf",
"num_top_components":50,
"do_whiten": 0,
"dist_npairs": 5000000})

dz10 = sqp10.fit_transform(adata.X, [H2], ['feature_vector'], [1])

Finally, let’s do Leiden clustering of the RNA-seq, ATAC-seq, and the two Schema runs. We’ll compare the cluster as-
signments to the ground truth cell labels. Intuitively, by combining RNA-seq and ATAC-seq, one should be able to get
a more biologically accurate clustering. We visually evaluate the clusterings below; in the paper, we’ve supplemented
this with more quantitative estimates.

import schema.utils
fcluster = schema.utils.get_leiden_clustering #feel free to try your own clustering
→˓algo

ld_cluster_rna = fcluster(sqp99._decomp_mdl.transform(adata.X.todense()))
ld_cluster_atac = fcluster(H2)
ld_cluster_sqp99 = fcluster(dz99)
ld_cluster_sqp10 = fcluster(dz10)

x = adata.obs.tsne_1
y = adata.obs.tsne_2
idx = adata.obs.rgb.apply(lambda s: isinstance(s,str) and '#' in s).values.tolist()
→˓#skip nan cells

fig, axs = plt.subplots(3,2, figsize=(10,15))
(continues on next page)

18 Chapter 4. Data Integration Examples

Schema, Release 0.1.0

(continued from previous page)

axs[0][0].scatter(x[idx], y[idx], c=adata.obs.rgb.values[idx], s=1)
axs[0][0].set_title('Ground Truth')
axs[0][1].scatter(x[idx], y[idx], c=adata.obs.rgb.values[idx], s=1, alpha=0.1)
axs[0][1].set_title('Ground Truth Labels')
for c in np.unique(adata.obs.cell_name_short[idx]):

if c=='nan': continue
cx,cy = x[adata.obs.cell_name_short==c].mean(), y[adata.obs.cell_name_short==c].

→˓mean()
axs[0][1].text(cx,cy,c,fontsize=10)

axs[1][0].scatter(x[idx], y[idx], c=ld_cluster_rna[idx], cmap='tab20b', s=1)
axs[1][0].set_title('RNA-seq')
axs[1][1].scatter(x[idx], y[idx], c=ld_cluster_atac[idx], cmap='tab20b', s=1)
axs[1][1].set_title('ATAC-seq')
axs[2][0].scatter(x[idx], y[idx], c=ld_cluster_sqp99[idx], cmap='tab20b', s=1)
axs[2][0].set_title('Schema-99%')
axs[2][1].scatter(x[idx], y[idx], c=ld_cluster_sqp10[idx], cmap='tab20b', s=1)
axs[2][1].set_title('Schema-10%')

for ax in np.ravel(axs): ax.axis('off')

Below, we show the figures in a 3x2 panel of t-SNE plots. In the first row, the left panel shows the cells colored by
ground-truth cell types; the right panel is basically the same but lists the cell types explicitly. The next row shows
cells colored by RNA- or ATAC-only clustering. Notice how noisy the ATAC-only clustering is! This is not a bug in
our analysis– less than 0.3% of ATAC count matrix entries are non-zero and the sparsity of the ATAC data makes it
difficult to produce high-quality cell type estimates.

The third row shows cells colored by Schema-based clustering at 99% (left) and 10% (right) min_desired_corr thresh-
olds. With Schema at a low-distortion setting (i.e., min_desired_corr = 99%), notice that PT cells and Ki-67+ cells,
circled in red, are getting more correctly classified now. This improvement of the Schema-implied clustering over the
RNA-seq-only clustering can be quantified by measuring the overlap with ground truth cell grouping, as we do in the
paper.

This is a key strength of Schema — even with a modality that is sparse and noisy (like ATAC-seq here), it can
nonetheless extract something of value from the noisy modality because the constraint on distortion of the primary
modality acts as a regularization. This is also why we recommend that your highest-confidence modality be set as
the primary. Lastly as demonstration, if we relax the distortion constraint by setting min_desired_corr = 10%, you’ll
notice that the noise of ATAC-seq data does swamp out the RNA-seq signal. With an unconstrained approach (e.g.,
CCA or some deep learning approaches), this ends being a major challenge.

4.2. Paired RNA-seq and ATAC-seq 19

Schema, Release 0.1.0

20 Chapter 4. Data Integration Examples

Schema, Release 0.1.0

4.3 Paired-Tag

Here we synthesize simultaneously assayed RNA-seq, ATAC-seq and histone-modification data at a single-cell res-
olution, from the Paired-Tag protocol described in Zhu et al.’s study of adult mouse frontal cortex and hippocampus
(Nature Methods, 2021). This is a fascinating dataset with five different histone modifications assayed separately (3
repressors and 2 activators), in addition to RNA-seq and ATAC-seq. As in the original study, we consider each of the
histone modifications as a separate modality, implying a hepta-modal assay!

Interestingly, though, the modalities are available only in pairwise combinations with RNA-seq: some cells were
assayed for H3K4me1 & RNA-seq while another set of cells provided ATAC-seq & RNA-seq data, and so on. Here’s
the overall distribution of non-RNA-seq modalities across 64,849 cells.

This organization of data might be tricky to integrate with a method which expects each modality to be available for
all cells and has difficulty accomodating partial coverage of some modalities. Of course, you could always fall back
to an integrative approach that treats each modality’s cell population as independent, but then you miss out on the
simultaneously-multimodal aspect of this data.

With Schema, you can have your cake and eat it too! We do 6 two-way integrations (RNA-seq as the primary modality
against each of the other modalities) using the subsets of cells available in each case. Schema’s interpretable and linear
framework makes it easy to combine these. Once Schema computes the optimal transformation of RNA-seq that aligns
it with, say, ATAC-seq, we apply that transformation to the entire RNA-seq dataset, including cells that do not have
ATAC-seq data.

Such full-dataset extensions of the pairwise syntheses can then be stacked together. Doing Leiden clustering on the
result would enable us to infer cell types by integrating information from all modalities. As we will show below,
Schema’s synthesis helps improve the quality of cell type inference over what you could get just from RNA-seq.
Similarly for feature selection, Schema’s computed feature weights for each two-way synthesis can be averaged to get
the genes important to the overall synthesis. In a completely automated fashion and without any knowledge of tissue’s
source or biology, we’ll find that the genes Schema identifies as important turn out to be very relevant to neuronal
function and disease. Ready for more?

First, you will need the data. The original is available on GEO (GSE152020) but the individual modalities are huge
(e.g., the ATAC-seq peak-counts are in a 14,095 x 2,443,832 sparse matrix!). This is not unusual— epigenetic
modalites are typically very sparse (we discuss why this matters in Paired RNA-seq and ATAC-seq). As a prepro-
cessing step, we performed singular value decompositions (SVD) of these modalities and also reduced the RNA-seq
data to its 4,000 highly variable genes. An AnnData object with this preprocessing is available here (please remember
to also cite the original study if you use this dataset) :

wget http://cb.csail.mit.edu/cb/schema/adata_dimreduced_paired-tag.pkl

Let’s load it in:

4.3. Paired-Tag 21

https://www.nature.com/articles/s41592-021-01060-3
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152020

Schema, Release 0.1.0

import schema, pickle, anndata, sklearn.metrics
import scanpy as sc

you may need to change the file location as appopriate to your setup
adata = pickle.load(open("adata_dimreduced_paired-tag.pkl", "rb"))

print (adata.shape,
[(c, adata.uns['SVD_'+c].shape) for c in adata.uns['sec_modalities']])

As you see, we have stored the 50-dimensional SVDs of the secondary modalities in the .uns slots of the anndata
object. Also look at the adata.obs dataframe which has UMAP coordinates, ground-truth cell type names (as
assigned by Zhu et al.) etc.

We now do Schema runs for the 6 two-way modality combinations, with RNA-seq as the primary in each run. Each
run will also store the transformation on the entire 64,849-cell RNA-seq dataset and also store the gene importances.

d_rna = adata.X.todense()

desc2transforms = {}
for desc in adata.uns['sec_modalities']:

print(desc)

we mostly stick with the default settings, explicitly listed here for clarity
sqp = schema.SchemaQP(0.99, mode='affine', params= {"decomposition_model": 'pca',

"num_top_components":50,
"do_whiten": 0, # this is

→˓different from default
"dist_npairs": 5000000})

extract the relevant subset
idx1 = adata.obs['rowidx'][adata.uns["SVD_"+desc].index]
prim_d = d_rna[idx1,:]
sec_d = adata.uns["SVD_"+desc].values
print(len(idx1), prim_d.shape, sec_d.shape)

sqp.fit(prim_d, [sec_d], ['feature_vector'], [1]) # fit on the idx1 subset...
dz = sqp.transform(d_rna) # ...then transform the full RNA-seq dataset

desc2transforms[desc] = (sqp, dz, idx1, sqp.feature_weights(k=3))

Cell type inference:: In each of the 6 runs above, dz is a 64,849 x 50 matrix. We can horizontally stack these
matrices for a 64,849 x 300 matrix that represents the transformation of RNA-seq data informed simultaneously by all
6 secondary modalities.

a6Xpca = np.hstack([dz for _,dz,_,_ in desc2transforms.values()])
adata_schema = anndata.AnnData(X=a6Xpca, obs=adata.obs)
print (adata_schema.shape)

We then perform Leiden clustering on the original and transformed data, computing the overlap with expert marker-
gene-based annotation by Zhu et al.

original
sc.pp.pca(adata)
sc.pp.neighbors(adata)
sc.tl.leiden(adata)

Schema-transformed

(continues on next page)

22 Chapter 4. Data Integration Examples

Schema, Release 0.1.0

(continued from previous page)

since Schema had already done PCA before it transformed, let's stick with its raw
→˓output
sc.pp.neighbors(adata_schema, use_rep='X')
sc.tl.leiden(adata_schema)

we'll do plots etc. with the original AnnData object
adata.obs['leiden_schema'] = adata_schema.obs['leiden'].values

compute overlap with manual cell type annotations
ari_orig = sklearn.metrics.adjusted_rand_score(adata.obs.Annotation, adata.obs.
→˓leiden)
ari_schema= sklearn.metrics.adjusted_rand_score(adata.obs.Annotation, adata.obs.
→˓leiden_schema)

print ("ARI: Orig: {} With Schema: {}".format(ari_orig, ari_schema))

As you can see, the ARI with Schema improved from 0.437 (using only RNA-seq) to 0.446 (using all modalities).
Single-cell epigenetic modalities are very sparse, making it difficult to distinguish signal from noise. However,
Schema’s constrained approach allows it to extract signal from these secondary modalities nonetheless, a task which
has otherwise been challenging (see the related discussion in our paper or in Paired RNA-seq and ATAC-seq).

Before we plot these clusters, we’ll relabel the Schema-based Leiden clusters to match the labeling of RNA-seq only
Leiden clusters; this will make their color schemes consistent. You will need to install the Python package munkres
(pip install munkres) for the related computation.

import munkres
list1 = adata.obs['leiden'].astype(int).tolist()
list2 = adata.obs['leiden_schema'].astype(int).tolist()

contmat = sklearn.metrics.cluster.contingency_matrix(list1, list2)
map21 = dict(munkres.Munkres().compute(contmat.max() - contmat))
adata.obs['leiden_schema_relabeled'] = [str(map21[a]) for a in list2]
adata.obs['Schema_reassign'] = [('Same' if (map21[a]==a) else 'Different') for a in
→˓list2]

for c in ['Annotation','Annot2', 'leiden', 'leiden_schema_relabeled', 'Schema_reassign
→˓']:

sc.pl.umap(adata, color=c)

4.3. Paired-Tag 23

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02313-2

Schema, Release 0.1.0

It’s also interesting to identify cells where the cluster assignments changed after multi-modal synthesis. As you can
see, it’s only in certain cell types where the epigenetic data suggests a different clustering than the primary RNA-seq
modality.

Gene set identification: The feature importances output by Schema here identify the genes whose expression vari-
ations best agree with epigenetic variations in these tissues. We first aggregate the feature importances across the 6
two-ways runs:

df_genes = pd.DataFrame({'gene': adata.var.symbol})
for desc, (_,_,_,wts) in desc2transforms.items():

df_genes[desc] = wts
df_genes['avg_wt'] = df_genes.iloc[:,1:].mean(axis=1)
df_genes = df_genes.sort_values('avg_wt', ascending=False).reset_index(drop=True)

gene_list = df_genes.gene.values

sc.pl.umap(adata, color= gene_list[:6], gene_symbols='symbol', color_map='plasma',
→˓frameon=False, ncols=3)

24 Chapter 4. Data Integration Examples

Schema, Release 0.1.0

Many of the top genes identified by Schema (e.g., Erbb4, Npas3, Zbtb20, Luzp2) are known to be relevant to neuronal
function or disease. Note that all of this fell out of the synthesis directly— we didn’t do any differential expression
analysis against an external background or provide the method some other indication that the data is from brain tissue.

We also did a GO enrichment analysis (via Gorilla) of the top 100 genes by Schema weight. Here are the significant
hits (FDR q-val < 0.1). Again, most GO terms relate to neuronal development, activity, and communication:

Table 1: GO Enrichment of Top Schema-identified genes
GO:0007416 synapse assembly
GO:0050808 synapse organization
GO:0051960 regulation of nervous system development
GO:0007156 homophilic cell adhesion via plasma membrane adhesion molecules
GO:0032989 cellular component morphogenesis
GO:0007155 cell adhesion
GO:0051239 regulation of multicellular organismal process
GO:0022610 biological adhesion
GO:0099177 regulation of trans-synaptic signaling
GO:0050804 modulation of chemical synaptic transmission
GO:0007399 nervous system development
GO:0099536 synaptic signaling
GO:0006810 transport
GO:0042391 regulation of membrane potential
GO:0007610 behavior
GO:0098742 cell-cell adhesion via plasma-membrane adhesion molecules

4.3. Paired-Tag 25

https://www.ncbi.nlm.nih.gov/gene/2066
https://www.ncbi.nlm.nih.gov/gene/64067
https://www.ncbi.nlm.nih.gov/gene/26137
https://www.ncbi.nlm.nih.gov/gene/338645
http://cbl-gorilla.cs.technion.ac.il/
GO:0007416
GO:0050808
GO:0051960
GO:0007156
GO:0032989
GO:0007155
GO:0051239
GO:0022610
GO:0099177
GO:0050804
GO:0007399
GO:0099536
GO:0006810
GO:0042391
GO:0007610
GO:0098742

Schema, Release 0.1.0

26 Chapter 4. Data Integration Examples

CHAPTER 5

Visualization Examples

Popular tools like t-SNE and UMAP can produce intuitive and appealing visualizations. However, since they perform
opaque non-linear transformations of the input data, it can be unclear how to “tweak” the visualization to accentuate
a specific aspect of the input. Also, it can can sometimes be difficult to understand which features (e.g. genes) of the
input were most important to getting the plot.

Schema can help with both of these issues. With scRNA-seq data as the primary modality, Schema can transform
it by infusing additional information into it while preserving a high level of similarity with the original data. When
t-SNE/UMAP are applied on the transformed data, we have found that the broad contours of the original plot are
preserved while the new information is also reflected. Furthermore, the relative weight of the new data can be calibrated
using the min_desired_corr parameter of Schema.

5.1 Ageing fly brain

Here, we tweak the UMAP plot of Davie et al.’s ageing fly brain data to accentuate cell age.

First, let’s get the data and do a regular UMAP plot.

import schema
import scanpy as sc
import anndata

def sc_umap_pipeline(bdata, fig_suffix):
sc.pp.pca(bdata)
sc.pp.neighbors(bdata, n_neighbors=15)
sc.tl.umap(bdata)
sc.pl.umap(bdata, color='age', color_map='coolwarm', save='_{}.png'.format(fig_

→˓suffix))

adata = schema.datasets.fly_brain() # adata has scRNA-seq data & cell age
sc_umap_pipeline(adata, 'regular')

This should produce a plot like this, where cells are colored by age.

27

https://lvdmaaten.github.io/tsne/
https://umap-learn.readthedocs.io/en/latest/
https://doi.org/10.1016/j.cell.2018.05.057

Schema, Release 0.1.0

Next, we apply Schema to infuse cell age into the scRNA-seq data, while preserving a high level of correlation with the
original scRNA-seq distances. We start by requiring a minimum 99.9% correlation with original scRNA-seq distances

sqp = schema.SchemaQP(min_desired_corr=0.999, # require 99.9% agreement with
→˓original scRNA-seq distances

params= {'decomposition_model': 'nmf', 'num_top_components':
→˓20})

mod999_X = sqp.fit_transform(adata.X, [adata.obs['age']], ['numeric']) #
→˓correlate gene expression with the age
sc_umap_pipeline(anndata.AnnData(mod999_X, obs=adata.obs), '0.999')

We then loosen the min_desired_corr constraint a tiny bit, to 99%

sqp.reset_mincorr_param(0.99) # we can re-use the NMF transform (which takes more
→˓time than the quadratic program)

mod990_X = sqp.fit_transform(adata.X, [adata.obs['age']], ['numeric'])
sc_umap_pipeline(anndata.AnnData(mod990_X, obs=adata.obs), '0.990')

diffexp_gene_wts = sqp.feature_weights() # get a ranking of genes important to the
→˓alignment

These runs should produce a pair of plots like the ones shown below. Note how cell-age progressively stands out as
a characteristic feature. We also encourage you to try out other choices of min_desired_corr (e.g., 0.90 or 0.7); these
will show the effect of allowing greater distortions of the primary modality.

28 Chapter 5. Visualization Examples

Schema, Release 0.1.0

This example also illustrates Scehma’s interpretability. The variable diffexp_gene_wts identifies the genes most im-
portant to aligning scRNA-seq with cell age. As we describe in our paper, these genes turn out to be differentially
expressed between young cells and old cells.

5.1. Ageing fly brain 29

https://doi.org/10.1101/834549

Schema, Release 0.1.0

30 Chapter 5. Visualization Examples

CHAPTER 6

Datasets

6.1 Ageing Drosophila brain

This is sourced from Davie et al. (Cell 2018, GSE 107451) and contains scRNA-seq data from a collection of fly
brain cells along with each cell’s age (in days). It is a useful dataset for exploring a common scenario in multi-modal
integration: scRNA-seq data aligned to a 1-dimensional secondary modality. Please see the example in Visualization
where this dataset is used.

import schema
adata = schema.datasets.fly_brain()

6.2 Paired RNA-seq and ATAC-seq from mouse kidney cells

This is sourced from Cao et al. (Science 2018, GSE 117089) and contains paired RNA-seq and ATAC-seq data from a
collection of mouse kidney cells. The AnnData object provided here has some additional processing done to remove
very low count genes and peaks. This is a useful dataset for the case where one of the modalities is very sparse (here,
ATAC-seq). Please see the example in Paired RNA-seq and ATAC-seq where this dataset is used.

import schema
adata = schema.datasets.scicar_mouse_kidney()

31

https://doi.org/10.1016/j.cell.2018.05.057
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107451
https://schema-multimodal.readthedocs.io/en/latest/visualization/index.html#ageing-fly-brain
https://doi.org/10.1126/science.aau0730
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117089
https://schema-multimodal.readthedocs.io/en/latest/recipes/index.html#paired-rna-seq-and-atac-seq

Schema, Release 0.1.0

32 Chapter 6. Datasets

CHAPTER 7

References

Code: Github repo

Paper: If you use Schema, please consider citing Schema: metric learning enables interpretable synthesis of hetero-
geneous single-cell modalities (http://doi.org/10.1101/834549)

Project Website: http://schema.csail.mit.edu

33

https://github.com/rs239/schema
http://doi.org/10.1101/834549
http://schema.csail.mit.edu

Schema, Release 0.1.0

34 Chapter 7. References

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

35

Schema, Release 0.1.0

36 Chapter 8. Indices and tables

Python Module Index

s
schema, 9

37

Schema, Release 0.1.0

38 Python Module Index

Index

E
explore_param_mincorr() (schema.SchemaQP

method), 10

F
feature_weights() (schema.SchemaQP method),

11
fit() (schema.SchemaQP method), 12
fit_transform() (schema.SchemaQP method), 13

G
get_start_end_dist_correlations()

(schema.SchemaQP method), 13

R
reset_maxwt_param() (schema.SchemaQP

method), 13
reset_mincorr_param() (schema.SchemaQP

method), 14

S
schema (module), 9
SchemaQP (class in schema), 9

T
transform() (schema.SchemaQP method), 14

39

	Overview
	Installation
	API
	Data Integration Examples
	Visualization Examples
	Datasets
	References
	Indices and tables
	Python Module Index
	Index

